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Scheduling in Wireless Networks

Wireless devices located in a metric space

Each communication request has value vi > 0

Transmissions with Interference (and Noise)

Problem: Capacity Maximization

Maximize total value of successful
transmissions.

Basic problem for illustration

Foundational for many more complicated tasks

Design Algorithms across Interference Models



Interference?

Disk Graph Model

Users are transmitters in the plane

User i has a transmission range

Two transmitters can get assigned
the same channel if their ranges do
not intersect.

Set I of users is successful if there is no
intersection among ranges of users in I,
i.e., I is an independent set in the
intersection graph.
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Protocol Model

Protocol Model

Underlying Metric Space (V, d)
Requests between points in V

dij distance between sender si and
receiver rj

Success if every chosen sender is far

Condition based on constant ∆ > 0:

dij ≥ (1 + ∆)djj

Successful requests are simultaneously
feasible w.r.t. their distance condition.

We can build a directed conflict graph G.
Set I of successful users is an independent
set in G.
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Physical Model of Interference

Physical Model

Underlying Metric Space (V, d)
Requests between points in V

Parameter:

Path loss exponent α

Decay: gij = 1/dαij

Threshold β > 0

Noise ν ≥ 0

SINR Condition:

gii · pi ≥ β ·

ν +
∑
j 6=i

gji · pj


Successful requests are simultaneously
feasible w.r.t. their SINR condition.



Physical Model of Interference

Path Loss:
p

dα

Physical Model

Underlying Metric Space (V, d)
Requests between points in V

Parameter:

Path loss exponent α

Decay: gij = 1/dαij

Threshold β > 0

Noise ν ≥ 0

SINR Condition:

gii · pi ≥ β ·

ν +
∑
j 6=i

gji · pj


Successful requests are simultaneously
feasible w.r.t. their SINR condition.



Physical Model of Interference

Path Loss:
p

dα

Physical Model

Underlying Metric Space (V, d)
Requests between points in V

Parameter:

Path loss exponent α

Decay: gij = 1/dαij

Threshold β > 0

Noise ν ≥ 0

SINR Condition:

gii · pi ≥ β ·

ν +
∑
j 6=i

gji · pj


Successful requests are simultaneously
feasible w.r.t. their SINR condition.



Physical Model of Interference

Path Loss:
p

dα

Weighted Conflict Graph

Fixed distances dij and powers pi

Complete directed graph

w(i, j) for ordered pair of requests i, j

Measures impact of interference of i
on j, relative to j’s signal strength

Affectance:

w(i, j) =
β · gij · pi
gjjpj − βν

SINR Condition:∑
j 6=i

w(j, i) ≤ 1



Inductive Independence

In general, independent set is O(n1−ε)-hard to approximate, but affectances
are based on distances in a metric space.

Define ”undirected weights”

w̄(i, j) = w(i, j) + w(j, i) .

For request j, ordering π of requests, the backward set of j is

Γπ(j) = {i | π(i) < π(j)} .

G has inductive independence number ρ ⇔ The best ordering bounds the
incoming weight from every independent set in every backward set to at most ρ.

Definition

The inductive independence number of G is the minimum number ρ s.t. there
is ordering π which has for all j and independent sets I:∑

i∈I∩Γπ(j)

w̄(i, j) ≤ ρ .
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Inductive Independence Number

Proposition

For disk graphs, the inductive independence number ρ is at most 5.

Idea:

Non-increasing order of radius

Geometric Argument:
At most ρ = 5 intersecting disks
with larger radius and without
mutual intersection.
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Inductive Independence in Interference Models

All prominent interference models have small upper bounds on ρ. These
bounds hold even for trivial orderings.

Model Order Bound Ref.

Disk Graphs Radius 5 [Folklore]

Protocol Model Length

⌈
π

arcsin ∆
2(∆+1)

⌉
− 1 [Wan, MobiCom’09]

IEEE 802.11 model Length 23 [Wan, MobiCom’09]

Distance-2-Match Radius O(1) [Barrett et al, PERCOMW’06]

Distance-2-Color Radius O(1) [Hoefer et al, SPAA’11]

SINR, Monotone Length O(logn) [Kesselheim, Vöcking, DISC’10]

SINR, Mean Length O(1)/O(log log ∆) [Halldórsson et al, SODA’13]

SINR, Power Ctrl. Length O(1) [Kesselheim SODA’10, ESA’12]



Algorithms for Unweighted Conflict Graphs [Akcoglu et al, 2002]

Greedy Algorithm for MaxIS

Every node has initial budget bi = 1

For each node i in reverse order of π do:

If current bi > 0 do:

For every backward neighbor j set bj → max{bj − bi, 0}.
Pick all nodes with bi > 0

For each node i in order of π do:

If bi > 0 and S ∪ {i} is independent, add i to S.

A local ratio argument shows that greedy computes a ρ-approximation.

There is no ρ/ω(log4 ρ)-approximation algorithm for independent set.
Follows from a lower bound in regular graphs. [Chan, STOC’13]
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Greedy Algorithm for (node-)weighted MaxIS

Every node has initial budget bi = vi

For each node i in reverse order of π do:

If current bi > 0 do:

For every backward neighbor j set bj → max{bj − bi, 0}.
Initialize S = ∅.
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Algorithms for Edge-Weighted Conflict Graphs [H., Kesselheim, Vöcking, SPAA’11]

LP relaxation:

max
∑
i

vixi

s.t.
∑
i∈V

π(i)<π(j)

w̄(i, j) · xi ≤ ρ ∀j

xi ≤ 1 ∀i

Solve the LP relaxation, solution x∗. Use randomized rounding with
x∗i /4ρ. Apply greedy conflict resolution in the ordering of π s.t. resulting
set S fulfills stronger constraints:

∑
w̄(i, j) · xi ≤ 1/2.

Integral solution S is a 8ρ-approximation, but it is not feasible in the
forward direction.

Partition S into dlogne feasible independent sets, pick the best one. This
gives a (8ρ · logn)-approximation for the problem.
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Approximation Results for Capacity Maximization [Hoefer, Kesselheim, EC’12]

We consider the problem for k channels.

Requests on each channel form an independent set in the conflict graph.

Request i has value vi(S) for subset S ⊆ [k].

Improved results depending on structure of the vi(S).

Unweighted CG Weighted CG

1 Channel ρ O(ρ · logn) [AADK’02, HKV’11]

k Channels O(ρ ·
√
k) O(ρ ·

√
k · logn) [HKV’11]

k-Multi-Unit O(ρ) O(ρ · (logn+ log k)) [HK’12]

k-MRS O(ρ) O(ρ · logn) [HK’12]



Spectrum Auctions

Requests posted by strategic agents

Valuations vi(S) are private information.

Agents receive channel access and must pay for it

Agent maximizes: Value of obtained channels minus payments.

Allocation algorithm is public knowledge.

Affectances are public knowledge.

Spectrum Auctions:

Ask for private valuations of agents.

Compute an allocation of channels to requests.

Compute payments for the agents.

Truthfulness: Design algorithms and payments such that agents have no
incentive to lie about their private valuations.

Randomized Meta-Rounding yields a randomized algorithm with the same
approximation bounds and truthfulness in expectation. [Lavi, Swamy JACM’11]
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Online Algorithms [Göbel, H., Kesselheim, Schleiden, Vöcking CoRR’13]

Online Independent Set seems hopeless, even for interval graphs with ρ = 1.

Suppose requests all have value vi = 1, affectances are determined in advance,
and requests are revealed in uniformly random order.

Sample-and-Inject for Unweighted Conflict Graphs

Reject the first k = Binom(n, 0.5) requests, denote this set by M1

Set output S = ∅
For each subsequent request i do

Would Greedy on M1 ∪ i take i? No: Reject i.

Reject i with probability 1− 1/2ρ.

If i survived and S ∪ i is IS, accept i and set S ← S ∪ i.
Otherwise reject i.
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Online Algorithms

Theorem

Sample-and-Inject is O(ρ2)-competitive for unweighted conflict graphs and
requests with vi = 1.

More generally, we obtain the following bounds:

Unweighted CG Weighted CG

vi = 1 O(ρ2) O(ρ2 log2 n)

arbitrary O(ρ2 logn) O(ρ2 log3 n)

Extensions:

For many other stochastic adversaries, e.g., prophet inequalities or periodic
optimization with limited changes, we get the same bounds.

Advanced scenarios with arrival and departure dates, at the expense of an
additional O(logn) factor.



Extensions

At the expense of additional O(logn) factors, algorithms based on the
inductive independence number allow to solve numerous more complicated
tasks across interference models.

Discrete Utility Functions for different SINR
[Kesselheim ESA’12]

Latency Minimization and Distributed Scheduling
[Kesselheim, Vöcking DISC’10; Halldorsson, Mitra ICALP’11]

Dynamic Packet Arrival and Stability
[Kesselheim PODC’12; Asgeirsson et al SIROCCO’12]

Wireless Connectivity
[Halldorsson, Mitra SODA’12; PODC’12]



Limitations and Open Problems

Tight bounds for inductive independence number

Structural and complexity properties of the inductive independence
number for interference models.
What about, e.g., finding the best ordering/lower bounds?

Tight bounds for algorithms and applications
Do we need logn factors for online algorithms, mechanism design, etc.

What is the price for designing algorithms across interference models?
Disk graphs allow a PTAS with MaxIS. [Erlebach et al, SICOMP’05]

Are there other equally useful parameters for designing approximation
algorithms that allow abstraction/application across interference models?

What about distributed algorithms and restricted feedback models?
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