Algorithms across Interference Models

Martin Hoefer

mhoefer@mpi-inf.mpg.de

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Scheduling in Wireless Networks

- Wireless devices located in a metric space
- Each communication request has value $v_i > 0$
- Transmissions with Interference (and Noise)

Problem: Capacity Maximization

Maximize total value of successful transmissions.

- Basic problem for illustration
- Foundational for many more complicated tasks

WIRELESS NTERNET

< □ > < 同 > < E > < E > E < のQ @</p>

Design Algorithms across Interference Models

Disk Graph Model

- Users are transmitters in the plane
- User *i* has a transmission range
- Two transmitters can get assigned the same channel if their ranges do not intersect.

Set I of users is successful if there is no intersection among ranges of users in I, i.e., I is an independent set in the intersection graph.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Interference?

Disk Graph Model

- Users are transmitters in the plane
- User *i* has a transmission range
- Two transmitters can get assigned the same channel if their ranges do not intersect.

Set I of users is successful if there is no intersection among ranges of users in I, i.e., I is an independent set in the intersection graph.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Protocol Model

Protocol Model

Underlying Metric Space (V, d)Requests between points in V

- d_{ij} distance between sender s_i and receiver r_j
- Success if every chosen sender is far
- Condition based on constant $\Delta > 0$:

 $d_{ij} \geq (1+\Delta)d_{jj}$

Successful requests are simultaneously feasible w.r.t. their distance condition.

We can build a directed conflict graph G. Set I of successful users is an independent set in G.

Protocol Model

Protocol Model

Underlying Metric Space (V, d)Requests between points in V

- d_{ij} distance between sender s_i and receiver r_j
- Success if every chosen sender is far
- Condition based on constant $\Delta > 0$:

 $d_{ij} \geq (1+\Delta)d_{jj}$

Successful requests are simultaneously feasible w.r.t. their distance condition.

We can build a directed conflict graph G. Set I of successful users is an independent set in G.

Protocol Model

Protocol Model

Underlying Metric Space (V, d)Requests between points in V

- d_{ij} distance between sender s_i and receiver r_j
- Success if every chosen sender is far
- Condition based on constant $\Delta > 0$:

 $d_{ij} \geq (1+\Delta)d_{jj}$

Successful requests are simultaneously feasible w.r.t. their distance condition.

We can build a directed conflict graph G. Set I of successful users is an independent set in G.

< □ > < 同 > < E > < E > E < OQ @</p>

Physical Model

Underlying Metric Space (V, d)Requests between points in V

▲□▶ ▲圖▶ ▲温▶ ▲温▶ ― 温…

990

Physical Model

Underlying Metric Space (V, d)Requests between points in V

Parameter:

• Path loss exponent α

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• Decay:
$$g_{ij} = 1/d_{ij}^{\alpha}$$

Physical Model

Underlying Metric Space (V, d)Requests between points in V

Parameter:

- \bullet Path loss exponent α
- Decay: $g_{ij} = 1/d_{ij}^{\alpha}$
- $\bullet~{\rm Threshold}~\beta>0$
- $\bullet \ \ {\rm Noise} \ \nu \geq 0$

SINR Condition:

$$egin{array}{ccc} g_{ii} \cdot p_i & \geq & eta \cdot \left(
u + \sum_{j
eq i} g_{ji} \cdot p_j
ight) \end{array}$$

Successful requests are simultaneously feasible w.r.t. their SINR condition.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Weighted Conflict Graph

- Fixed distances d_{ij} and powers p_i
- Complete directed graph
- $\bullet \ w(i,j)$ for ordered pair of requests i,j
- Measures impact of interference of *i* on *j*, relative to *j*'s signal strength

• Affectance:

$$w(i,j) = \frac{\beta \cdot g_{ij} \cdot p_i}{g_{jj}p_j - \beta \nu}$$

SINR Condition:

$$\sum_{j \neq i} w(j, i) \leq 1$$

Sac

Inductive Independence

In general, independent set is $O(n^{1-\varepsilon})\text{-hard}$ to approximate, but affectances are based on distances in a metric space.

Inductive Independence

In general, independent set is $O(n^{1-\varepsilon})$ -hard to approximate, but affectances are based on distances in a metric space.

Define "undirected weights"

$$\bar{w}(i,j) = w(i,j) + w(j,i)$$

For request j, ordering π of requests, the backward set of j is

 $\Gamma_{\pi}(j) = \{i \mid \pi(i) < \pi(j)\}$.

< □ > < 同 > < E > < E > E < OQ @</p>

Inductive Independence

In general, independent set is $O(n^{1-\varepsilon})$ -hard to approximate, but affectances are based on distances in a metric space.

Define "undirected weights"

 $\bar{w}(i,j) = w(i,j) + w(j,i) \ .$

For request j, ordering π of requests, the backward set of j is

 $\Gamma_{\pi}(j) = \{i \mid \pi(i) < \pi(j)\} .$

G has inductive independence number $\rho \Leftrightarrow$ The best ordering bounds the incoming weight from every independent set in every backward set to at most ρ .

Definition

The inductive independence number of G is the minimum number ρ s.t. there is ordering π which has for all j and independent sets I:

$$\sum_{\in I \cap \Gamma_{\pi}(j)} \bar{w}(i,j) \le \rho \; \; .$$

Proposition

For disk graphs, the inductive independence number ρ is at most 5.

Idea:

- Non-increasing order of radius
- Geometric Argument: At most $\rho = 5$ intersecting disks with larger radius and without mutual intersection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition

For disk graphs, the inductive independence number ρ is at most 5.

Idea:

- Non-increasing order of radius
- Geometric Argument: At most $\rho = 5$ intersecting disks with larger radius and without mutual intersection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

All prominent interference models have small upper bounds on $\rho.$ These bounds hold even for trivial orderings.

Order	Bound	Ref.
Radius	5	[Folklore]
Length	$\left\lceil \frac{\pi}{\arcsin \frac{\Delta}{2(\Delta+1)}} \right\rceil - 1$	[Wan, MobiCom'09]
Length	23	[Wan, MobiCom'09]
Radius	O(1)	[Barrett et al, PERCOMW'06]
Radius	O(1)	[Hoefer et al, SPAA'11]
Length	$O(\log n)$	[Kesselheim, Vöcking, DISC'10]
Length	$O(1)/O(\log\log\Delta)$	[Halldórsson et al, SODA'13]
Length	O(1)	[Kesselheim SODA'10, ESA'12]
	Order Radius Length Length Radius Radius Length Length Length	OrderBoundRadius5Length $\left[\frac{\pi}{\arccos \frac{\Delta}{2(\Delta+1)}}\right] - 1$ Length23Radius $O(1)$ Radius $O(1)$ Length $O(\log n)$ Length $O(1)/O(\log \log \Delta)$ Length $O(1)$

Greedy Algorithm for MaxIS

- Every node has initial budget $b_i = 1$
- For each node i in reverse order of π do:
- If current $b_i > 0$ do:
- For every backward neighbor j set $b_j \to \max\{b_j b_i, 0\}$.
- Pick all nodes with $b_i > 0$

- A local ratio argument shows that greedy computes a ρ -approximation.
- There is no $\rho/\omega(\log^4 \rho)$ -approximation algorithm for independent set. Follows from a lower bound in regular graphs. [Chan, STOC'13]

< □ > < 同 > < E > < E > E < OQ @</p>

Greedy Algorithm for (node-)weighted MaxIS

- Every node has initial budget $b_i = v_i$
- For each node i in reverse order of π do:
- If current $b_i > 0$ do:
- For every backward neighbor j set $b_j \to \max\{b_j b_i, 0\}$.
- Initialize $S = \emptyset$.
- For each node i in order of π do:
- If $b_i > 0$ and $S \cup \{i\}$ is independent, add i to S.
- A local ratio argument shows that greedy computes a ρ -approximation.
- There is no $\rho/\omega(\log^4 \rho)$ -approximation algorithm for independent set. Follows from a lower bound in regular graphs. [Chan, STOC'13]

(ロ)、(型)、(E)、(E)、 E) の(の)

• Solve the LP relaxation, solution x^* . Use randomized rounding with $x_i^*/4\rho$. Apply greedy conflict resolution in the ordering of π s.t. resulting set S fulfills stronger constraints: $\sum \overline{w}(i, j) \cdot x_i \leq 1/2$.

< □ > < 同 > < E > < E > E < OQ @</p>

- Solve the LP relaxation, solution x^* . Use randomized rounding with $x_i^*/4\rho$. Apply greedy conflict resolution in the ordering of π s.t. resulting set S fulfills stronger constraints: $\sum \bar{w}(i, j) \cdot x_i \leq 1/2$.
- Integral solution S is a $8\rho\text{-approximation, but it is not feasible in the forward direction.}$

< □ > < 同 > < E > < E > E < OQ @</p>

- Solve the LP relaxation, solution x^* . Use randomized rounding with $x_i^*/4\rho$. Apply greedy conflict resolution in the ordering of π s.t. resulting set S fulfills stronger constraints: $\sum \overline{w}(i, j) \cdot x_i \leq 1/2$.
- Integral solution S is a $8\rho\text{-approximation, but it is not feasible in the forward direction.$
- Partition S into $\lceil \log n \rceil$ feasible independent sets, pick the best one. This gives a $(8\rho \cdot \log n)$ -approximation for the problem.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We consider the problem for k channels.

- Requests on each channel form an independent set in the conflict graph.
- Request *i* has value $v_i(S)$ for subset $S \subseteq [k]$.
- Improved results depending on structure of the $v_i(S)$.

	Unweighted CG	Weighted CG	
1 Channel	ρ	$O(\rho \cdot \log n)$	[AADK'02, HKV'11]
k Channels	$O(\rho \cdot \sqrt{k})$	$O(\rho \cdot \sqrt{k} \cdot \log n)$	[HKV'11]
k-Multi-Unit	O(ho)	$O(\rho \cdot (\log n + \log k))$	[HK'12]
<i>k</i> -MRS	O(ho)	$O(ho \cdot \log n)$	[HK'12]

Spectrum Auctions

Requests posted by strategic agents

- Valuations $v_i(S)$ are private information.
- Agents receive channel access and must pay for it
- Agent maximizes: Value of obtained channels minus payments.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Allocation algorithm is public knowledge.
- Affectances are public knowledge.

Spectrum Auctions:

- Ask for private valuations of agents.
- Compute an allocation of channels to requests.
- Compute payments for the agents.

Spectrum Auctions

Requests posted by strategic agents

- Valuations $v_i(S)$ are private information.
- Agents receive channel access and must pay for it
- Agent maximizes: Value of obtained channels minus payments.
- Allocation algorithm is public knowledge.
- Affectances are public knowledge.

Spectrum Auctions:

- Ask for private valuations of agents.
- Compute an allocation of channels to requests.
- Compute payments for the agents.

Truthfulness: Design algorithms and payments such that agents have no incentive to lie about their private valuations.

Spectrum Auctions

Requests posted by strategic agents

- Valuations $v_i(S)$ are private information.
- Agents receive channel access and must pay for it
- Agent maximizes: Value of obtained channels minus payments.
- Allocation algorithm is public knowledge.
- Affectances are public knowledge.

Spectrum Auctions:

- Ask for private valuations of agents.
- Compute an allocation of channels to requests.
- Compute payments for the agents.

Truthfulness: Design algorithms and payments such that agents have no incentive to lie about their private valuations.

Randomized Meta-Rounding yields a randomized algorithm with the same approximation bounds and truthfulness in expectation. [Lavi, Swamy JACM'11]

Online Independent Set seems hopeless, even for interval graphs with $\rho = 1$.

Suppose requests all have value $v_i = 1$, affectances are determined in advance, and requests are revealed in uniformly random order.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Online Independent Set seems hopeless, even for interval graphs with $\rho = 1$.

Suppose requests all have value $v_i = 1$, affectances are determined in advance, and requests are revealed in uniformly random order.

Sample-and-Inject for Unweighted Conflict Graphs

- Reject the first k = Binom(n, 0.5) requests, denote this set by M_1
- Set output $S = \emptyset$
- For each subsequent request i do
- Would Greedy on $M_1 \cup i$ take *i*? No: Reject *i*.
- Reject *i* with probability $1 \frac{1}{2\rho}$.
- If i survived and $S \cup i$ is IS, accept i and set $S \leftarrow S \cup i$.
- Otherwise reject *i*.

Theorem

Sample-and-Inject is $O(\rho^2)$ -competitive for unweighted conflict graphs and requests with $v_i = 1$.

More generally, we obtain the following bounds:

	Unweighted CG	Weighted CG
$v_i = 1$	$O(\rho^2)$	$O(\rho^2 \log^2 n)$
arbitrary	$O(\rho^2 \log n)$	$O(\rho^2 \log^3 n)$

Extensions:

- For many other stochastic adversaries, e.g., prophet inequalities or periodic optimization with limited changes, we get the same bounds.
- Advanced scenarios with arrival and departure dates, at the expense of an additional $O(\log n)$ factor.

At the expense of additional $O(\log n)$ factors, algorithms based on the inductive independence number allow to solve numerous more complicated tasks across interference models.

• Discrete Utility Functions for different SINR

[Kesselheim ESA'12]

- Latency Minimization and Distributed Scheduling
 [Kesselheim, Vöcking DISC'10; Halldorsson, Mitra ICALP'11]
- Dynamic Packet Arrival and Stability

[Kesselheim PODC'12; Asgeirsson et al SIROCCO'12]

Wireless Connectivity

[Halldorsson, Mitra SODA'12; PODC'12]

• Tight bounds for inductive independence number

- Tight bounds for inductive independence number
- Structural and complexity properties of the inductive independence number for interference models.
 What about, e.g., finding the best ordering/lower bounds?

(ロ)、(型)、(E)、(E)、 E) の(の)

- Tight bounds for inductive independence number
- Structural and complexity properties of the inductive independence number for interference models.
 What about, e.g., finding the best ordering/lower bounds?
- Tight bounds for algorithms and applications Do we need $\log n$ factors for online algorithms, mechanism design, etc.

- Tight bounds for inductive independence number
- Structural and complexity properties of the inductive independence number for interference models.
 What about, e.g., finding the best ordering/lower bounds?
- Tight bounds for algorithms and applications Do we need $\log n$ factors for online algorithms, mechanism design, etc.
- What is the price for designing algorithms across interference models? Disk graphs allow a PTAS with MaxIS. [Erlebach et al, SICOMP'05]

- Tight bounds for inductive independence number
- Structural and complexity properties of the inductive independence number for interference models.
 What about, e.g., finding the best ordering/lower bounds?
- Tight bounds for algorithms and applications Do we need $\log n$ factors for online algorithms, mechanism design, etc.
- What is the price for designing algorithms across interference models? Disk graphs allow a PTAS with MaxIS. [Erlebach et al, SICOMP'05]
- Are there other equally useful parameters for designing approximation algorithms that allow abstraction/application across interference models?

- Tight bounds for inductive independence number
- Structural and complexity properties of the inductive independence number for interference models.
 What about, e.g., finding the best ordering/lower bounds?
- Tight bounds for algorithms and applications Do we need $\log n$ factors for online algorithms, mechanism design, etc.
- What is the price for designing algorithms across interference models? Disk graphs allow a PTAS with MaxIS. [Erlebach et al, SICOMP'05]
- Are there other equally useful parameters for designing approximation algorithms that allow abstraction/application across interference models?
- What about distributed algorithms and restricted feedback models?